LOGARITHMIC UPPER BOUNDS FOR WEAK SOLUTIONS TO A CLASS OF PARABOLIC EQUATIONS

XIANGSHENG XU
Department of Mathematics & Statistics
Mississippi State University
Mississippi State, MS 39762, USA

Abstract. It is well known that a weak solution φ to the initial boundary value problem for the uniformly parabolic equation
\[\partial_t \phi - \text{div}(A \nabla \phi) + \omega \phi = f \quad \text{in } \Omega_T \equiv \Omega \times (0, T) \]
 satisfies the uniform estimate
\[\|\phi\|_{\infty, \Omega_T} \leq \|\phi\|_{\infty, \partial_p \Omega_T} + c\|f\|_{q, \Omega_T}, \quad c = c(N, \lambda, q, \Omega_T), \]
 provided that \(q > 1 + \frac{N}{2} \), where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \) with Lipschitz boundary, \(T > 0 \), \(\partial_p \Omega_T \) is the parabolic boundary of \(\Omega_T \), \(\omega \in L^1(\Omega_T) \) with \(\omega \geq 0 \), and \(\lambda \) is the smallest eigenvalue of the coefficient matrix \(A \). This estimate is sharp in the sense that it generally fails if \(q = 1 + \frac{N}{2} \).

In this talk, I will begin with the history of this problem. In particular, I will describe the elegant techniques of De Giorgi and Moser. I will end with my contributions to the subject, which say that the linear growth of the upper bound in \(\|f\|_{q, \Omega_T} \) can be improved. To be precise, we establish
\[\|\phi\|_{\infty, \Omega_T} \leq \|\phi_0\|_{\infty, \partial_p \Omega_T} + c\|f\|_{1 + \frac{N}{2}, \Omega_T} \left(\ln \left(\|f\|_{q, \Omega_T} + 1 \right) + 1 \right). \]

E-mail address: xxu@math.msstate.edu

1991 Mathematics Subject Classification. Primary: 35K20, 35B45, 35D30, 35B50.

Key words and phrases. Logarithmic upper bounds, Moser’s iteration technique, uniform bounds for weak solutions of parabolic equations.