## Summary of Research

The algebra research group focuses on infinite group theory, algebraic geometry, commutative algebra, and combinatorics.

## Faculty Members

### Paul Allen

Professor Allen’s research is in group theory and ring theory.

Find Dr. Allen’s contact information in the department directory.

### Jon Corson

Professor Corson’s research is in geometric ring theory.

Find Dr. Corson’s contact information in the department directory.

### Martyn Dixon

Professor Dixonâ€™s research is in infinite group theory. He is mostly interested in structural properties of infinite groups which satisfy some finiteness condition, including locally finite groups, generalized radical groups and locally graded groups. His early research was concerned with the Sylow theory of locally finite groups but more recently he has been concerned with groups satisfying certain rank conditions such as the Prufer rank, the torsion-free rank and finite abelian section rank. He is also interested in groups all of whose subgroups satisfy certain conditions. This includes the study of groups with all subgroups permutable, or subnormal, or f-subnormal. He has also been involved with work generalizing the theorems of Schur, Baer and P. Hall. Infinite dimensional linear groups are also one of his interests.

Find Dr. Dixon’s publications on MathSciNet.

Find Dr. Dixon’s contact information in the department directory.

### Martin Evans

Professor Evans’ research in in infinite group theory.

Find Dr. Evans’ contact information in the department directory.

### Kyunglong Lee

Dr. Lee’s research lies in the intersection of algebra, combinatorics, geometry, topology, and physics. The algebraic objects he is particularly interested in include cluster algebras, MacDonald polynomials, and Kazhdan-Lusztig polynomials. All of these are motivated by theoretical physics, and have been studied in terms of (co)homologies, algebraic combinatorics, and topological cell decompositions. He uses tools from a wide variety of mathematical areas, including algebraic geometry, commutative algebra, non-commutative algebra, and representation theory.

Find Dr. Lee’s publications on MathSciNet and ArXiv.

Find Dr. Lee’s contact information in the department directory.